dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
↳ QTRS
↳ DependencyPairsProof
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
Used ordering: Polynomial interpretation [21]:
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
POL(DX1(x1)) = x1
POL(div2(x1, x2)) = x1 + x2
POL(exp2(x1, x2)) = x1 + x2
POL(ln1(x1)) = x1
POL(minus2(x1, x2)) = x1 + x2
POL(neg1(x1)) = x1
POL(plus2(x1, x2)) = 1 + x1 + x2
POL(times2(x1, x2)) = x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
Used ordering: Polynomial interpretation [21]:
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
POL(DX1(x1)) = x1
POL(div2(x1, x2)) = x1 + x2
POL(exp2(x1, x2)) = x1 + x2
POL(ln1(x1)) = x1
POL(minus2(x1, x2)) = 1 + x1 + x2
POL(neg1(x1)) = x1
POL(times2(x1, x2)) = x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
Used ordering: Polynomial interpretation [21]:
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
POL(DX1(x1)) = x1
POL(div2(x1, x2)) = 1 + x1 + x2
POL(exp2(x1, x2)) = x1 + x2
POL(ln1(x1)) = x1
POL(neg1(x1)) = x1
POL(times2(x1, x2)) = x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
Used ordering: Polynomial interpretation [21]:
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
POL(DX1(x1)) = x1
POL(exp2(x1, x2)) = x1 + x2
POL(ln1(x1)) = x1
POL(neg1(x1)) = x1
POL(times2(x1, x2)) = 1 + x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
Used ordering: Polynomial interpretation [21]:
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
POL(DX1(x1)) = x1
POL(exp2(x1, x2)) = 1 + x1 + x2
POL(ln1(x1)) = x1
POL(neg1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(ln1(ALPHA)) -> DX1(ALPHA)
Used ordering: Polynomial interpretation [21]:
DX1(neg1(ALPHA)) -> DX1(ALPHA)
POL(DX1(x1)) = x1
POL(ln1(x1)) = 1 + x1
POL(neg1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(neg1(ALPHA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(neg1(ALPHA)) -> DX1(ALPHA)
POL(DX1(x1)) = x1
POL(neg1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))